ON THE DENSITY OF HYPONORMAL OPERATORS

BY PENG FAN AND JOSEPH STAMPFLI

ABSTRACT

The set of hyponormal operators whose squares are not hyponormal is norm dense in the set of all hyponormal operators.

A well known example of Halmos [1] exhibits a hyponormal operator T whose square is not hyponormal. The first author has shown that the class Q of such operators is strongly dense in the set H_0 of all hyponormal operators. The purpose of this note is to show Q is actually norm dense in H_0 .

We begin with the following

LEMMA. Let S be the unilateral shift; thus $Se_n = e_{n+1}$ for $n = 1, 2, \cdots$ where $\{e_j\}_{i=1}^{\infty}$ is an orthonormal basis for \mathcal{H} .

Set $T_{a,b} = I + aS + bS^*$. Then

(1) $T_{a,b}$ is hyponormal for $a, b \in \mathbb{C}$; $|a| \ge |b|$.

(2) $T_{a,b}^2$ is not hyponormal for $b \neq 0$, |a| > |b|.

PROOF. (1) is a well known folk Theorem.

(2) We must show that $A = [T_{a,b}^{*2}, T_{a,b}^2]$ is not positive semi-definite. A straightforward calculation shows that

$$(Ae_2, e_2) = 0$$
 and $(Ae_2, e_0) = \bar{a}b(|a|^2 - |b|^2).$

Since positivity would imply $0 \neq |(Ae_2, e_0)|^2 \leq (Ae_2, e_2)(Ae_0, e_0) = 0$ the proof is complete.

THEOREM. The norm closure of $Q = H_0$.

PROOF. Clearly the left hand side is contained in the right. To show the reverse inclusion let $\varepsilon > 0$ be given and let $T \in H_0$. If $\lambda \in \sigma_{\varepsilon}(T)$, it follows from [2] that $||T - U^*(\lambda \oplus T)U|| < \varepsilon$ for some unitary operator U. Hence it suffices

Received March 3, 1983

to approximate $(\lambda \oplus T)$, and thus in turn it suffices to approximate λI . Choose $0 < b < a < \varepsilon$. Then

$$\|(\lambda \oplus T) - [(\lambda + aS + bS^*) \oplus T]\| < 2\varepsilon$$

and $(\lambda + aS + bS^* \oplus T) \in Q$ by the Lemma, for $\lambda \neq 0$. For $\lambda = 0$ one can show directly that $aS + bS^* \in Q$ or approximate with $\lambda_n \to 0$.

REFERENCES

1. P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, NJ, 1967.

2. C. M. Pearcy and N. Salinas, Compact perturbations of seminormal operators, Indiana Univ. Math. J. 22 (1973), 789-793.

TEXAS CHRISTIAN UNIVERSITY FORT WORTH, TX 76129 USA

INDIANA UNIVERSITY BLOOMINGTON, IN 47401 USA